

Effluent Irrigation Quick Calibration

Worksheet for Travelling Effluent Irrigators 5-15% overlap v2.0 Download from: www.pagebloomer.co.nz/resources/irrigation

Measurement Procedure

What equipment will you need?

This guide and the worksheet

- 22 Collectors of the same diameter (at least 150 mm) 9 Litre plastic buckets are good
- 1 Measuring cylinder (about 2 Litre)
- 1 20 m tape
- 2 Electric fence standards
- 1 Stop watch
- 1 Pen or pencil

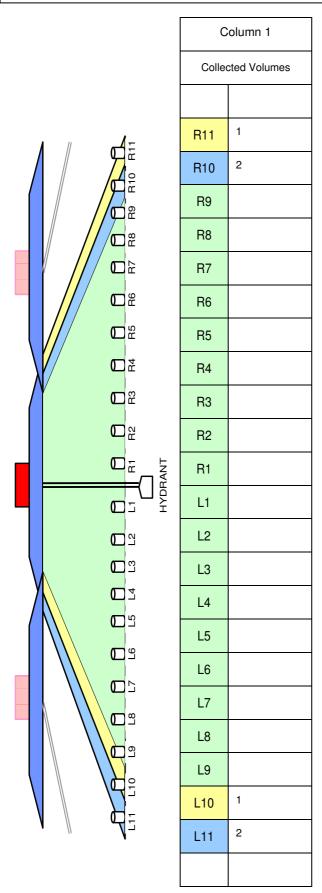
Application test

- 1 Set your 22 buckets in a row across the direction of irrigator travel [T1 in Diagram 1]
- Start the irrigator away from (before any water can reach) the line of buckets
- 3 Run the irrigator until it is well past wetting the buckets. Measure the irrigator speed as it passes over the test buckets
- 4 Measure the volume of water caught in each bucket and record on the Record Sheet

Test Details			
Farm Name			
Tester's Name			
Test Date			
Test Machine			
Test Field/Run			
Target Irrig Depth	[mm]		
Test distance	[m]		
Test time	[min]		
Speed	[m/min]		
Test Flow	[L/min]		
Test Pressure at pump	[kPa]		
Test Pressure at irrigator [kPa]			
Wind conditions			
Nutrient test N [kg/m ³ c	or mg/L]		
Nutrient test K [kg/m ³ c	or mg/L]		

Dealing with overlap

- 1. Place a marker half way between adjacent runs.
- 2. Mark the extent of obvious wetting when the irrigator runs. This is the "Irrigator wetting width".
- 3. If the wetting width is greater than the run spacing width, you need to account for overlap.
- 4. Place one bucket half way between the edge of the lane and the edge of the wetting width.
- 5. Mirror this inside the edge of the lane, setting another bucket at the same spacing from the edge of the lane.
- Arrange nine more buckets at even spacing to cover the area back to the centre line (the hose or cable).
- 7. Repeat 4, 5 & 6 on the right hand side.


Speed test

- 1 Set two markers (e.g. fence standards) 5.0m apart along the hose or cable
- 2 The markers should cross the line of collectors
- 3 Measure the time for the irrigator to travel between markers.

Field Details			
а	Run spacing (Diag. 1) [m]		
b	Run length (Diag. 1) [m]		
С	Area Irrigated (a x b / 10,000) [ha]		
d	Number of runs		
е	Total Area (c x d) [ha]		
f	Irrigator wetting width (Diag. 1) [m]		
g	Wetting pattern width (Diag. 1) [m]		
h	Wetting area (f x g) [m ²]		
i	Bucket diameter (measure) [mm]		
j	Open area (i / 2000) ² x 3.14 [m ²]		
k	Applied Depth (from next page) [mm]		
m	High Quartile Depth (k x DU _{hq}) [mm]		
n	Speed (from Test Details) [m/min]		
р	Flow Rate (a x k x m) [L/min]		
q	Application Rate (p / h x 60) [mm/hr]		

Recording Sheet for Travelling Effluent Irrigator Calibration

Enter your field measurements from buckets in Column 1. Complete the overlap adjustments in Column 2. Complete the calculations in Column 3.

	1	
С	olumn 2	
Overlapped Volumes		
Add Boxes R11 and L10 from Collected Volumes and enter in L10 Below. Repeat for R10 and L11		
R10		
R9		
R8		
R7		
R6		
R5		
R4		
R3		
R2		
R1		
L1		
L2		
L3		
L4		
L5		
L6		
L7		
L8		
L9		
L10		
SUM of 20		
AVG		

of 20

C	Column 3			
Ca	Calculations			
	Enter the highest five volumes in boxes 1 – 5			
1				
2				
3				
4				
5				
SUM of 5				
AVG of 5				
averag	Calculate DU: Divide average of lowest five by average of all twenty			
AVG of 5				
AVG of 20				
DU _{Hi}				
app Avera	Calculate average applied depth: Average volume ÷ Bucket Area ÷ 1000			
AVG of 20				
Area m ²				
Depth				
Calcula mm	Calculate N&K Loading mm x mg/L÷ 100 OR mm x kg/m³ x 10			
Depth				
N K	ı			
N K	ı			

kg/ha

© Page Bloomer Associates